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ABSTRACT 
 

This paper utilizes the Colliding Bodies of Optimization (CBO), Enhanced Colliding Bodies 

of Optimization (ECBO) and Vibrating Particles System (VPS) algorithms to optimize the 

reservoir system operation. CBO is based on physics equations governing the one-

dimensional collisions between bodies, with each agent solution being considered as an 

object or body with mass and ECBO utilizes memory to save some historically best 

solutions and uses a random procedure to escape from local optima. VPS is based on 

simulating free vibration of single degree of freedom systems with viscous damping. To 

evaluate the performance of these three recent population-based meta-heuristic algorithms, 

they are applied to one of the most complex and challenging issues related to water resource 

management, called reservoir operation optimization problems. Hypothetical 4 and 10-

reservoir systems are studied to demonstrate the effectiveness and robustness of the 

algorithms. The aim is on discovering the optimum mix of releases, which will lead to 

maximum benefit generation throughout the system. Comparative results show the 

successful performance of the VPS algorithm in comparison to the CBO and its enhanced 

version. 
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1. INTRODUCTION 
 

Reservoirs provide the main water resources in many basins. Optimal operation of 
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reservoirs is necessary in regional water management especially in case of limited water 

resources. Reservoirs Operation Optimization (ROO) problems typically are difficult to 

solve because of the involvement of a large number of decision variables and constraints. 

Thus, solving these problems need a powerful technique.  

Two different methods have already been applied for solving the reservoir operation 

optimization problem, classical methods and evolutionary algorithms (EAs). Linear 

programming (LP), dynamic programming (DP), stochastic dynamic programming (SDP) 

and non-linear programming (NLP) are settled in classical methods category. Various 

researchers have applied these classical methods to support the decision-making process of 

water reservoir operations [1-4]. Almost all these classical optimization methods have 

limitations in solving ROO problems. For example, LP only can solve optimization 

problems with linear objective function and constraints, DP and SDP suffer from curse of 

dimensionality and state-space discretization and NLP may trap in a local optimum 

especially in non-convex optimization problems [5].  

EAs have been widely used in several fields of water resources system issues such as 

reservoir operation. Wardlaw and Sharif [6] optimized this problem using genetic algorithm 

(GA) and reported that algorithm with real value coding performs significantly faster than 

the one that employs binary coding. According to Cai et al. [7], evolutionary methods have 

been applied to solve new large-scale nonlinear reservoir management models. They 

presented a combined GA and linear programming strategy for solving large nonlinear 

problems that are difficult, if not impossible, using currently available NLP solvers. GA 

models were also successfully applied by Chen [8]. Ahmed and Sarma [9] presented a 

genetic algorithm model to find the optimal operating policy of a multipurpose reservoir, 

located on the river Pagladia, a major tributary of the river Brahmaputra. 

Kumar and Reddy [10] made comparison between the performances of ant colony 

optimization (ACO) and GA in the operation of the Hirakud reservoir in India with 

agricultural, hydropower, and flood control functions. Their results indicate the superiority 

of ACO over GA in accuracy and computational speed terms. GA was used to derive 

optimal operation policies of Pechiparai reservoir in Tamil Nadu, India by Jothiprakash and 

Shanthi [11]. Adding pheromone re-initiations (PRIs) and partial path replacement (PPR) to 

ant colony optimization (ACO), Jalali et al. [12] optimized single and multi-reservoir 

system operation. Zahraie and Hosseini [13] derived operation rules of Zayandeh-Rud River 

reservoir in Iran. They used GA to determine optimal operation solution and derived the 

classic and fuzzy regressions operation rules. Bozorg-Haddad et al. [14] studied the 

capability of honey bee mating optimization (HBMO) algorithm in solving four-reservoir 

and ten-reservoir operation system problems, in both continuous and discrete domains. 

Their results indicated that the HBMO algorithm is able to solve such large scale 

optimization problems. Dariane and Sarani [15] employed the Intelligent Water Drops 

(IWD) algorithm and the ACO in Dez reservoir operation problem in Iran. Comparison of 

the results shows that while the IWD algorithm finds relatively better solutions and it is able 

to overcome the computational time consumption deficiencies inherited in the ACO 

methods, which is very important in large scale problems with too many decision variables 

problems where running time becomes a limiting factor for optimization model applications. 

Bozorg-Haddad et al. [16] applied the bat algorithm (BA) to optimize single and four-
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reservoir systems. Their results indicate that the high efficiency of BA in hydropower 

operation and large scale optimization problems.  

Single and four-reservoir system operation problems were solved using the water cycle 

algorithm (WCA) in [17] and the superiority of WCA over GA was proved. Hosseini-

Moghari et al. [18] compared the results of imperialist competitive algorithm (ICA), cuckoo 

optimization algorithm (COA) and GA with NLP in a single reservoir and four-reservoir 

optimization problem and the COA was reported as the most accurate method. Bozorg-

Haddad et al. [19] applied biogeography-based optimization (BBO) Algorithm to single and 

four-reservoir systems and the results shows the superiority of BBO over GA and WCA in 

term of accuracy. Asgari et al. [20] employed weed optimization algorithm (WOA) to solve 

four-reservoir system problem and reported that the WOA produces better results than those 

of GA. The efficacy of gravity search algorithm (GSA) for solving ROO problems is also 

investigated in [21]. The results of the GSA demonstrate its applicability, scalability, and 

efficiency for solving water-resource optimization problems. Moravej and Moghari [22] 

applied the interior search algorithm (ISA) to solve one-, four- and ten- reservoirs system 

operation problems. They compared results of the ISA with those of NLP, GA and other 

meta-heuristic algorithms. Considering the results, it was stated that the ISA is a powerful 

tool to optimize complex large scale reservoir system operation problems. 

In this study, the Colliding Bodies Optimization (CBO) developed by Kaveh and 

Mahdavi [23], the Enhanced Colliding Bodies Optimization (ECBO) introduced by Kaveh 

and Ilchi Ghazaan [24], as well as Vibrating Particles System (VPS) developed by Kaveh 

and Ilchi Ghazaan [25] are used to determine optimal operation of hypothetical reservoir 

problems. Considering the fact that the CBO, ECBO and VPS have not been used to solve 

water resources management so far and their high capability as reported in [26, 27], a survey 

on application of these algorithms in multi-reservoir system operation problem seems 

necessary. Thus, this paper deals with the application of these new algorithms in reservoir 

system operation problems. To do so, two reservoir systems were considered (four-reservoir 

and ten-reservoir systems) and the results of other well-studied algorithms were compared 

with them.  

The rest of this paper is organized as follows: CBO, ECBO and VPS are described in the 

next three sections. In Section 5, modeling of reservoir operation is presented. Results and 

analysis of proposed algorithms application in optimization of a reservoir operation problem 

are given in Section 6 and finally, the achievements of the paper are summarized in the 

conclusion section. 

 

 

2. COLLIDING BODIES OPTIMIZATION ALGORITHM 
 

The collision is a natural occurrence and the CBO algorithm was developed based on this 

phenomenon by Kaveh and Mahdavi [23]. In this technique, one object collides with other 

object and they move towards a minimum energy level. Each CB has initial randomly 

position in the search space: 

 

 0

min max min. 1,2, ,ix x rand x x i n     (1) 
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where 0

ix is the initial solution vector of the ith CB. xmin and xmax are the minimum and the 

maximum allowable variables vectors; and rand is a random vector with each component 

being in the interval [0,1]. Also each CB has a specified mass defined base on its objective 

function value, as: 

 

 

 
2

1

1
1,2, ,

1
k n

i

fit k
m i n

fit i


 


 

(2) 

 

where, fit(i) represents the objective function value of the ith CB; n is the population size. 

Also, for maximizing the objective function, the term  1 fit i  is replaced by  fit i . 

The arrangement of the CBs objective function values is performed in ascending order. 

The sorted CBs are equally divided into two groups: (i) stationary, (ii) moving. The lower 

half of the CBs (stationary CBs) are good agents which are stationary and the upper half of 

CBs (moving CBs) move toward the lower half. The velocity of these CBs before collision 

(vi) is: 
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v i   (3) 
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(4) 

 

where xi is the position vectors of the ith CB.  

Then moving CBs collide to stationary CBs to improve their positions and push 

stationary CBs towards better positions. After collision, the velocity of stationary and 

moving CBs ( '

iv ) are evaluated by: 
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(6) 

 
where m is the mass of the ith CB,   is the coefficient of restitution (COR) and for most of 

the real objects, its value is between 0 and 1. It is used to control of the exploration and 

exploitation rate and defined as: 

 

max

1
iter

iter
    (7) 

 

where, iter is the current iteration number and maxiter  is the maximum number of iterations. 
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New positions of each group are obtained using the generated velocities after the collision: 
 

' 1,2, ,
2

new

i i i

n
x x rand v i    (8) 

'

/2 1, ,
2

new

i i n i

n
x x rand v i n   

 

(9) 

 

where new

ix  and '

iv  are the new position and the velocity after the collision of the ith CB, 

respectively; rand is a random vector uniformly distributed in the range [-1, 1] and the sign 

“ ” denotes an element-by-element multiplication. The optimization process is repeated 

until the termination criterion, specified as the maximum number of iterations, is satisfied. 

 

 

3. ENHANCED COLLIDING BODIES OPTIMIZATION ALGORITHM 
 

ECBO was developed by Kaveh and Ilchi Ghazan [24] to improve the performance of the 

CBO and reduce the computational cost. In this enhanced version, a memory is defined to 

save a number of historically best CBs and also some components of CBs are changed 

randomly to escape from local optima. The main steps of the ECBO are given as follows: 

Step 1. Initialization 

The initial positions of all the CBs are created randomly in an m-dimensional search 

space based on Eq. (1). 

Step 2. Mass allocation 

The value of mass for each CB is allocated according to Eq. (2). 

Step 3. Storing CM 

Colliding memory (CM) is defined to save a number of historically best CB vectors and 

their related mass and objective function values. In this study the size of the CM is taken as 

n/4. In this step, the solution vectors that are saved in CM are added to the population, and 

the same numbers of current worst CBs are deleted. At last, CBs are sorted according to 

their objective function values. 

Step 4. Dividing 

CBs are divided into two equal groups to select the pairs for collision: (i) stationary 

group, (ii) moving group. 

Step 5. Calculating velocities 

The velocities of stationary and moving bodies before collision are obtained using Eqs. 

(3) and (4), respectively. The moving group move toward the stationary group and their 

velocities after collision are calculated by Eqs. (5) and (6), respectively. 

Step 6. Updating CBs 

The new position of each CB is evaluated base on Eqs. (8) and (9). 

Step 7. Regeneration 

In each iteration, a parameter like Pro within (0, 1) is introduced and it is specified 

whether a component of each CB must be changed or not. For each CB, Pro is compared 

with rand which is a random number uniformly distributed within (0, 1). If rand < Pro, one 

dimension of the ith CB is selected randomly and its value is regenerated base on: 
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 ,min ,max ,minij j j jx x rand x x    (10) 

 

where ijx  is the jth variable of the ith CB. 
,maxjx  and 

,minjx  are the lower and upper bounds 

of the jth variable. In order to protect the structures of CBs, only one dimension is changed. 

In this paper, the value of Pro is set to 0.3. 

Step 8. Terminating criterion check 

Repeat step 2 to step 7 until a terminating criterion is satisfied. 

 

 

4. VIBRATING PARTICLES SYSTEM OPTIMIZATION ALGORITHM 
 

The VPS is a population-based meta-heuristic method that simulates a free vibration of 

single degree of freedom systems with viscous damping (Kaveh and Ilchi Ghazaan [25]). 

The VPS involves a number of particles consisting of the solutions of the problem. The 

initial positions of particles are created randomly in an n-dimensional search space. The 

solution candidates gradually approach to their equilibrium positions which are achieved 

from current population and historically best position in order to have a proper balance 

between diversification and intensification.  

For each particle, three equilibrium positions with different weights are defined, and 

during each generation, the particle position is updated by learning from them: (i) the 

historically best position of the entire population (HB), (ii) a good particle (GP), and (iii) a 

bad particle (BP). In order to select the GP and BP for each candidate solution, the current 

population is sorted according to their objective function values in an increasing order, and 

then GP and BP are chosen randomly from the first and second half, respectively. 

A descending function based on the number of iterations is proposed in VPS to model the 

effect of the damping level in the vibration. 

 

max

iter
D

iter


 

  
 

 (11) 

 

where iter is the current iteration number and itermax is the total number of iterations for the 

optimization process. α is a constant. 

According to the above concepts, the update rules in the VPS are given by: 

 

1 2 3. . . 1 . . . 2 . . . 3j j j j

ix w D A rand HB w D A rand GP w D A rand BP                 (12) 

     1 2 3. . .j j j j j j

i i iA w HB x w GP x w BP x          
     

 

(13) 

1 2 3 1w w w  

 

(14) 
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where j

ix  is the jth variable of the particle i. w1, w2, and w3 are three parameters to measure 

the relative importance of HB, GP and BP, respectively. rand1, rand2 and rand3 are random 

numbers uniformly distributed in the range of [0, 1].  

In order to have a fast convergence in the VPS, the effect of BP is just sometimes 

considered in updating the position formula. Therefore, for each particle, a parameter like p 

within (0, 1) is defined, and it is compared with rand (a random number uniformly 

distributed in the range of [0, 1]) and if p < rand, then w3 = 0 and w2 = 1 − w1. 

 

 

5. MULTI-RESERVOIR OPERATION OPTIMIZATION MODELS 
 

The four-reservoir problem was introduced and solved for continuous decision variables by 

Chow and Cortes-Rivera [28]. Constrained differential dynamic programming method was 

used by Murray and Yakowitz [29] to solve this problem. The system consists of four 

reservoirs in the form of series and parallel, as shown in Fig. 1(a) and reservoir releases are 

used to generate hydropower and to satisfy irrigation water demand. Hydropower and 

irrigation benefits are quantified by linear functions of the discharge.  

The ten-reservoir problem was formulated and introduced by Murray and Yakowitz [29]. 

The schematic of this problem is shown in Fig. 1(b). The releases from the upstream 

reservoirs are passed on to the downstream reservoirs, and a reservoir may receive supplies 

from one or more upstream reservoirs. The releases from the reservoirs are used for 

generating hydropower. The benefit function is a linear function of release and is based 

upon the numerical values provided by Murray and Yakowitz [29]. 

 

 
Figure 1. Schematic representation of the (a) four-reservoir and (b) ten-reservoir problem 

 

To compare the capability of the CBO, ECBO and VPS algorithms in solving ROO 

problems, these benchmark problems of multi-reservoir operation are considered. These 

problems offer an opportunity to test the performance of the proposed algorithms against 
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known global optima obtained by the LP. 

Decision variables for these two ROO problems are reservoir releases in each operating 

period (decision point). The objective is to maximize the benefit from the system over 12 2-

h operating periods, as: 

 

1 1

( ) ( )
N T

i i

i t

Maximize F a t Re t
 

   (15) 

 

in which, i is the counter of the reservoir number; N is the total number of reservoirs; t is the 

counter of operation period; T is the total of operation period; ( )ia t  is the benefit per unit of 

release of reservoir i in period t; ( )iRe t  is the release of reservoir i in period t.  

The operation of each reservoir is based on the continuity constraint. This equation over 

operating period t for reservoir i is as the following equation: 

 

( 1) ( ) ( ) Re ( ) 1,..., & 1,...,i i i iS t S t I t M t t T i N        (16) 

 

in which, ( )iS t  is the storage of reservoir i at the start of period t; ( )iI t  is the inflow to 

reservoir i in period t; M is a N×N matrix of lists of reservoir connectivity (the relations 

between reservoirs based on inflow and outflow). 

The matrixes reservoir connectivity for the 4- and 10-reservoir problems are: 

 

1 0 0 0

0 1 0 0
,

0 1 1 0

1 0 1 1

M for four reservoir

 
 


  
 
 

 

 (17) 

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0
,

0 0 0 0 0 1 0 0 0 0

1 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 0 1 1

M for ten reservoir

 
 


 
 
 

 
 

  
 

 
 

 
 
 
  

 
(18) 
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The numbers 1 and -1 in the matrices show inflow and outflow to the reservoirs, 

respectively. Constraints related to reservoir releases and storages are as follows: 

 
min max( ) 1,..., & 1,...,i i iRe Re t Re t T i N      (19) 

min max( ) 1,..., & 1,...,i i iS S t S t T i N    
 

(20) 

( 1) (1) 1,...,i iS T S i N   
 

(21) 

 

where 
min

iRe  is the minimum release of reservoir i in period t; 
max

iRe  is the maximum 

release of reservoir i in period t; 
min

iS  is the minimum storage of reservoir i in period t; 

max

iS  is the maximum storage of reservoir i in period t. 

The constant parameters of Eqs. (19)-(21) for the 4- and 10-reservoir problems are: 

 

min max min
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 (23) 

 

Other values such as 
max

iS , ( )ia t  and ( )iI t  are as presented in Ref. [29]. 

If the reservoir storage does not meet the constraints in Eqs. (20) and (21), the results are 

infeasible and a penalty function should be applied. For the ultimate target function, the 

penalty functions are used as follows: 

 

 
2

min

11 ( ) ( ) 1,..., & 1,...,i i iP t K S S t t T i N     (24) 

 
2

max

22 ( ) ( ) 1,..., & 1,...,i i iP t K S t S t T i N   
 

(25) 

 
2

33 ( 1) (1) 1,...,i i iP K S T S i N   
 

(26) 
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where P are penalty functions, K1, K2, K3 are penalty constants were considered equal to 60, 

40, and 40, respectively.  

At the end, the objective function is based on the following equation: 

 

 
1 1

( ) ( ) 1 ( ) 2 ( ) 3 ( )
N T

i i i i i

i t

Maximise F a t Re t P t P t P t
 

        (27) 

 

 

6. RESULTS AND DISCUSSIONS 
 

In this study, in order to evaluate the performance of the CBO, ECBO and VPS algorithms 

[30, 31], the well-known hypothetical multi-reservoir optimization problems are used. All 

the algorithms are programmed with Matlab 8.5 on a Windows 7 professional using an Intel 

Core i7-M 620, 2.67 GHz and 4 GB RAM computer.  

The global optimal objective functions of the problems are obtained with non-linear 

programming solution by the LINGO 17.0 software and are equal to 308.29 and 1194.44 for 

four- and ten-reservoir systems, respectively. These values are the same with those reported 

in Ref. [14]. 

The CBO is a non-parameter algorithm but the values of the ECBO and VPS parameters 

were obtained in a sensitivity analysis process. Wherein the results of different runs with 

different combination of parameters are compared and the best parameters values are 

chosen. For fairly comparison between proposed algorithms, the random initial solutions of 

each runs, the maximum number of iterations and the population size are the same. The 

parameters of the algorithms used in this study are listed in Table 1. The results obtained for 

the optimization of two ROO problems are presented in the next two following sections.  

 
Table 1: Parameters of used algorithms 

Algorithm Parameter Value 

CBO - - 

ECBO 
Colliding memory (CM) n/4 

Regeneration probability (Pro) 0.3 

VPS 

α 0.05 

w1 0.3 

w2 0.3 

p 0.7 

HMCR 0.95 

PAR 0.1 

Common parameters 

Number of populations (n) 
Four-Reservoir 200 

Ten-Reservoir 250 

Maximum number of iterations (Itermax) 
Four-Reservoir 2500 

Ten-Reservoir 5000 
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6.1 Results of the four-reservoir problem 

The optimal solution reported by Chow and Cortez-Rivera [28] is equal to 308.26. The best 

solution achieved by Murray and Yakowitz [29] used differential dynamic programming 

(DDP) is equal to 308.23 and 307.98 after eight and 20 iterations, respectively.  

Recently, several researchers solved four-reservoir operation optimization model by 

employing different types of meta-heuristic algorithms. A literature review on this problem 

is given in Table 2. 

 
Table 2: Different results obtained for the four-reservoir problem 

Study Algorithm Ave
a 

SD
b 

Npop
c 

MNFE
d 

MaxIt
e 

Bozorg-Hadad et al. 

HBMO [14] 307.50 0.417 220 1,100,000 - 

BA [16] 307.84 0.350 50 500,050 - 

WCA [17] 304.92 1.887 100 - 5,000 

BBO [19] 307.69 0.511 - 500,000 - 

GSA [21] 308.30 0.277 200 500,000 - 

GA [21] 299.60 0.705 200 500,000 - 

Hosseini-Moghari et al. [18] 

GA 301.54 - 50 - 20,000 

ICA 305.11 - 50 - 20,000 

COA 306.90 - 50 - 20,000 

Asgari et al. [20] 
GA 299.69 0.689 200 - 8,000 

WOA 307.75 0.364 - - 20,000 

Ahmadianfar et al. [32] IBA 308.05 0.150 300 - 780 

Garousi-Nejad et al. [33] 
FA 305.51 0.665 50 500,050 - 

MFA 308.21 0.050 50 500,050 - 

Solgi et al. [34] EHBMO 308.08 0.321 211 - 4,000 

Ehteram et al. [35] 

GA 306.72 0.580 - 50,000 - 

Krill 307.26 0.220 - 50,000 - 

Hybrid 308.17 0.050 - 50,000 - 
a 
The average value of the objective functions obtained by algorithms.  

b 
Standard division of the objective function values.  

c 
The number of population.  

d
 The maximum number of function evaluations executed to achieve the optimal solution.  

e
 The maximum number of iteration. 

 

Table 2 indicates that GSA algorithm [41] achieved the nearest average solution to the 

absolute global optimum (NLP) compared with all other EAs. It is concluded that the hybrid 

GA and krill algorithms that was introduced by Ehteram et al. [44] solved the problem with 

the lowest maximum number of functional evaluations (50,000) compared with other 

algorithms and obtained 308.17 as the average objective function value that close to 99.96% 

of the global optimum. 

For the purpose of testing the performance of the CBO, ECBO and VPS algorithms in 

this study, this problem is solved with 200 and 2500 as the number of population size and 

the maximum number of iteration, respectively. The results of 10 independent runs of all 

presented algorithms are shown in Table 3 and Fig. 2.  
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Table 3: Results of 10 runs for the four-reservoir problem 

No. of run CBO ECBO VPS 

1 277.70 305.86 305.39 

2 274.88 305.22 306.54 

3 279.66 306.90 307.42 

4 279.49 303.91 305.82 

5 275.92 306.35 306.82 

6 274.47 303.91 305.26 

7 277.77 305.47 306.39 

8 276.35 305.19 305.66 

9 273.68 306.66 305.82 

10 280.27 305.50 306.93 

Best 280.27 306.90 307.42 

Worst 273.68 303.91 305.26 

Average 277.02 305.50 306.21 

Standard Deviation 2.32 1.02 0.72 

Coefficient of Variation 0.0084 0.0033 0.0024 
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Figure 2. The results of 10 different runs of CBO, ECBO and VPS for the four-reservoir 

operation 

 

As is shown in Table 3, the VPS algorithm achieved a closer solution to the global 

optimum (NLP solution) in contrast with CBO and ECBO. According to Table 3, the best 

result out of ten different runs was achieved by the VPS is 307.42 which is close to global 

optimum up to 99.72%. The average value of objective function obtained by the VPS 

exhibits 0.675% difference with the global optimal solution of the problem. In addition, the 

worst solution obtained by the VPS is better than the worst solution reaches by other 



RESERVOIR OPERATION OPTIMIZATION 

 

501 

methods. The small value of the standard deviation and coefficient of variation for the VPS 

illustrates the superior capacity of this algorithm to reach a close point to the global 

optimum. After that, ECBO shows better performance in contrast with CBO by reaching 

306.90, 305.50 and 303.91 as the best, average and worst solution, respectively.  

Figs. 3-5 show the convergence rates versus the number of function evaluations of the 

best, worst and average solutions of the three algorithms in 10 runs. The results show that 

VPS has better and faster convergence than other algorithms towards the optimal solution 

where it is established the superior performance of the VPS relative to these methods. 
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Figure 3. The best objective value for the four-reservoir operation 
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Figure 4. The worst objective value for the four-reservoir operation 
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Figure 5. The average objective value for the four-reservoir operation 

 

Figs. 6 and 7 show the monthly reservoir release and reservoir storage patterns of the best 

solution for the operation of the four-reservoir using the LP with VPS and ECBO as two 

superior algorithms. It can be seen that there is no any constraint violation and also the 

linear programming is almost entirely compatible with the VPS algorithm. 
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Figure 6. Comparison between the best result of ECBO, VPS and LP for reservoir releases 
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Figure 7. Comparison between the best result of ECBO, VPS and LP for reservoir storages 

 

6.2 Results of the ten-reservoir problem 

Murray and Yakowitz [29] employed differential dynamic programming (DDP) and they 

reported 1190.625 as the best solution for this problem that get as close as 99.8% of the 

global optimum obtained from LP using Lingo software (1194.44). Table 4 shows the 

literature review on the results of this problem obtained by different meta-heuristics. 

From Table 4, the multi-colony ACO algorithm find an optimum result with the lowest 

number of functional evaluations (450,000) compared to the other algorithms. The optimal 

objective function values were 1190.25, 1148.05, 1193.91, 1192.89, 1183.59 and 1185. 22 for 

GA, HBMO, hybrid GA and krill, IBA, MFA and multi-colony ACO algorithm, respectively. 

The highest percentage of the objective function relative to the absolute global optimal 

solution is 99.95%, obtained by Ehteram et al. [44].  

 
Table 4: Obtained results for the 10-reservoir system 

Study Algorithm Ave
a 

SD
b 

Npop
c 

MNFE
d 

MaxIt
e 

Wardlaw and Sharif [6] GA 1190.25 - 500 - 2500 

Jalali et al. [12] ACO 1185.22 3.60 150 - 3,000 

Bozorg-Hadad et al. [14] HBMO 1148.05 5.00 220 1,320,000 - 

Ahmadianfar et al. [32] IBA 1192.89 0.69 100 - 9700 

Garousi-Nejad et al. [33] 
FA 1097.41 8.0142 50 1,000,000 - 

MFA 1183.59 1.5177 50 1,000,000 - 

Ehteram et al. [35] 

GA 1188.68 1.13 - 500,000 - 

Krill 1189.66 0.707 - 500,000 - 

Hybrid 1193.91 0.31 - 500,000 - 
a 
The average value of the objective functions obtained by algorithms.  

b 
Standard division of the objective function values.  

c 
The number of population.  

d 
The maximum number of function evaluations executed to achieve the optimal solution.  

e
 The maximum number of iteration. 
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In this study, 10 different runs of the three algorithms are carried out with 250 and 5,000 

as population size and the maximum number of iterations, respectively. The related results 

are shown in Table 5 and Fig. 8.  

 
Table 5: Results for 10 runs for the ten-reservoir problem 

No. of run CBO ECBO VPS 

1 1017.13 1176.04 1184.26 

2 1062.00 1180.60 1183.48 

3 1051.65 1179.46 1180.47 

4 1070.38 1179.27 1184.50 

5 1071.48 1181.54 1180.47 

6 1095.31 1174.23 1184.50 

7 1029.58 1175.24 1181.62 

8 1042.51 1183.37 1177.26 

9 1089.82 1182.25 1176.38 

10 1081.46 1187.40 1189.19 

Best 1095.31 1187.40 1189.19 

Worst 1017.13 1174.23 1176.38 

Average 1061.13 1179.94 1182.21 

Standard Deviation 25.75 4.03 3.80 

Coefficient of Variation 0.0243 0.0034 0.0032 

 

1 2 3 4 5 6 7 8 9 10

1020

1040

1060

1080

1100

1120

1140

1160

1180

1200

Number of iteration

O
b
je

ct
iv

e 
F

u
n
ct

io
n
 v

al
u
e

 

 

Global Optima CBO ECBO VPS

 
Figure 8. The results of 10 runs of CBO, ECBO and VPS for the ten-reservoir operation 

 

The relative error associated with the average value of the objective function for the 

CBO, ECBO and VPS are about 11.16%, 1.21% and 1.02% compared to global solution 

(the LP result), respectively. The results of Table 5 show that, in addition to a suitable 

performance of the VPS in reaching the global optimal solution, the standard deviation of 

the objective function value and coefficient of variation of 10 different runs are equal to 
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3.80 and 0.0032, respectively. The standard deviation of the objective function value 

obtained by the CBO is equal to 25.75, which is approximately 6.8 times larger than that of 

VPS in 10 runs. The best, average and worst values of the objective function of VPS are 

99.56%, 98.98% and 98.49% of the global optimal solution (1194.44), respectively. 

Convergence rate of the best, worst, and average solution over the 10 runs are presented 

in Figs. 9, 10 and 11. They show the superior performance of the VPS compared to other 

methods. As it can be seen, the VPS shows better and even faster convergence towards the 

optimal solution. 

To be more informative, monthly releases and storages from different reservoirs, along 

with allowable range of releases and storages are presented in Figs. 12 and 13. 
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Figure 9. The best objective value for the ten-reservoir operation 
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Figure 10. The worst objective value for the ten-reservoir operation 
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Figure 11. The average objective value for the ten-reservoir operation 
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Figure 12. Comparison between the best result of ECBO, VPS and LP for reservoir releases 

 

6 12 6 12 6 12 6 12 6 12 6 12 6 12 6 12 6 12 6 12
0

5

10

15

20

25

30

35

Period (month)

S
to

ra
g
e 

(u
n
it

)

 

 

Max LP ECBO VPS Min

Reservoir 1 Reservoir 2 Reservoir 3 Reservoir 4 Reservoir 5 Reservoir 6 Reservoir 7 Reservoir 8 Reservoir 9 Reservoir 10

 
Figure 13. Comparison between the best result of ECBO, VPS and LP for reservoir storages 
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7. CONCLUDING REMARKS 
 

In this study, the capability of the three new developed meta-heuristic algorithms was 

evaluated in solving two well-known reservoir operation optimization benchmark problems 

(i.e. four- and ten-reservoir systems). Results indicate the high ability of the VPS to solve 

these problems. According to the results of different runs, the best solutions obtained by the 

VPS for four-reservoir and ten-reservoir system are 307.42 and 1189.19 which are close to 

global optimum obtained from LP up to 99.72% and 99.56 %, respectively. Comparing the 

results of the VPS with two other algorithms (CBO and ECBO), it can be concluded that the 

VPS can solve the considered problems with less computational efforts and a fast 

convergence rate. So, it proves the high capability of the VPS to solve large scale reservoirs 

system operation problems. After that ECBO has been more successful in approaching the 

global optimum solution obtained from LINGO 17.0. Although, parameter independency is 

an important advantage of the CBO algorithm but results indicate the superiority of its 

enhanced version.  

In addition, the lowest standard deviation and coefficient of variation obtained by the 

VPS show a better performance, higher accuracy and faster convergence to a given solution 

in each run of this algorithm. So, the VPS has superiority and it can be stated that the VPS is 

a reliable tool for reservoir operation optimization problems. 
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